The generator matrix 1 0 1 1 1 X+2 1 1 X 1 1 2 1 1 2X 1 1 3X+2 1 1 2X+2 1 1 3X 1 1 X 1 1 1 1 1 1 2X+2 1 1 1 1 3X 1 1 0 1 1 1 1 1 1 1 X+2 1 0 1 X+1 X+2 2X+3 1 X 3X+3 1 2 2X+1 1 2X X+1 1 3X+2 3 1 3X X+3 1 2X+2 1 1 0 X+2 2 3X 2X+2 0 3X+2 3X+1 3X+3 1 2 3X 2X 3X 1 3 2X+1 0 X 3X+1 2X+2 1 X+2 2X 3X+2 1 2X 0 0 2X+2 2 2X 2X+2 2X+2 2 2 2X 0 2X 2X+2 0 2X+2 0 2X+2 0 2X 2X 2 2 2 2X 2X 2X+2 2X+2 2 0 2 2X 2X 2X+2 2X+2 2X+2 0 0 2X+2 0 2 2X 2X+2 2 0 2X 0 2X 2 0 2 2X+2 generates a code of length 51 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 49. Homogenous weight enumerator: w(x)=1x^0+308x^49+158x^50+260x^51+61x^52+104x^53+33x^54+84x^55+1x^56+12x^57+1x^70+1x^76 The gray image is a code over GF(2) with n=408, k=10 and d=196. This code was found by Heurico 1.16 in 104 seconds.